Dynamic control of Förster energy transfer in a photonic environment.
نویسندگان
چکیده
In this study, the effect of modified optical density of states on the rate of Förster resonant energy transfer between two closely-spaced chromophores is investigated. A model based on a system of coupled rate equations is derived to predict the influence of the environment on the molecular system. Due to the near-field character of Förster transfer, the corresponding rate constant is shown to be nearly independent of the optical mode density. An optical resonator can, however, effectively modify the donor and acceptor populations, leading to a dramatic change in the Förster transfer rate. Single-molecule measurements on the autofluorescent protein DsRed using a λ/2-microresonator are presented and compared to the theoretical model's predictions. The observed resonator-induced dequenching of the donor subunit in DsRed is accurately reproduced by the model, allowing a direct measurement of the Förster transfer rate in this otherwise inseparable multichromophoric system. With this accurate yet simple theoretical framework, new experiments can be conceived to measure normally obscured energy transfer channels in complex coupled quantum systems, e.g. in photovoltaics or light harvesting complexes.
منابع مشابه
Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors.
The tools for optically imaging cellular potassium concentrations in real-time are currently limited to a small set of molecular indicator dyes. Quantum dot-based nanosensors are more photostable and tunable than organic indicators, but previous designs have fallen short in size, sensitivity, and selectivity. Here, we introduce a small, sensitive, and selective nanosensor for potassium measurem...
متن کاملNumerical Study of Heat Transfer and Aerosol Deposition in a Room Environment with Under-floor or Baseboard Heating Systems
In this study, heat transfer and aerosol deposition in the under-floor and baseboard heating systems have been investigated, numerically. The aim of this study is a comparison between these heating systems. This comparison obtains the optimal heating system with low suspended particles in the air. Computational fluid dynamic with Eulerian-Lagrangian method has been used to simulate fluid and pa...
متن کاملAssembling programmable FRET-based photonic networks using designer DNA scaffolds
DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marsha...
متن کاملQuantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.
Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent trans...
متن کاملModeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.
Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 25 شماره
صفحات -
تاریخ انتشار 2014